| | | | | | | SLR-D | K-2 | 48 | |--|-------------|---------------|---|---|--------------------|---|--------|------| | | Seat
No. | | | | | | Set | Р | | B.Sc. (Semester - VI) (Old) (CGPA) Examination Oct/Nov-2019 Statistics (Special Paper – XI) STATISTICAL INFERENCE – II | | | | | | | | | | | • | | : Monday, 07-10
) AM To 10:30 Al | | | Max. N | /larks | : 70 | | | Instru | ction | | | _ | ures to the right indicate full m
istical tables is allowed. | arks. | | | | | Fill in
1) | The most pragmis to find outa) Zero width (b) equal tail C. | natic approach for d

confidence interval (
.l.
that area of both the | etermi | atives given below. Ining $(1-lpha)\%$ confidence inte | rval | 14 | | | : | 2) | For finding the 0 distribution is us a) χ^2 c) t | | b) | e of two normal populations wh
F
normal | nich | | | | ; | 3) | | ample of size n from $= rac{\sum (X_i-\mu)^2}{\sigma^2}$ is | | σ^2) with known μ , the degrees $n \ 0$ | of | | | | | 4) | The hypothesis a) simple c) composite | under test is | b) | hesis.
null
alternative | | | | | : | 5) | Among all critica called C.l a) best c) minimum | | size α
b)
d) | the C.R. which minimizes $\boldsymbol{\beta}$ is $\begin{array}{c} \text{powerful} \\ \text{optimum} \end{array}$ | | | | | I | 6) | | ymbols of two types
r of runs is | s equa | I in numbers, the maximum | | | Most frequently used method of breaking the tie is _____. 8) hypothetical median value in terms of _____ only. a) mid-rank method c) both (a) and (b) a) 8 c) 9 a) signs 7) - b) to omit tied values - c) average statistic approach - d) most favorable statistic approach b) 10 d) 11 b) magnitude d) neither (a) nor (b) Ordinary sign test considers the difference of observed values from the | | 9) | Neyman-Pearson Lemma provides test. a) an unbiased b) an admissible c) most powerful d) minimax | | | | | | | |------------|-----|---|----|--|--|--|--|--| | | 10) | The SPRT decision about the hypothesis is taken a) after each successive observation b) after a fixed number of observations c) after at least five observations d) when the experiment is over | | | | | | | | | 11) | The test H_0 : $\mu=70$ against H_1 : $\mu>70$ leads to tailed test.
a) left b) right c) two d) none of these | | | | | | | | | 12) | Which of the following test is appropriate for paired data? a) the sign test b) signed rank test c) median test d) both (a) and (b) | | | | | | | | | 13) | In SPRT the decision criterion is a function of probability of error. a) type one b) type two c) both (a) and (b) d) neither (a) nor (b) | | | | | | | | | 14) | The probability of rejecting Ho when it is false is a) type I error b) type II error c) power of a test d) size of test | | | | | | | | Q.2 | A) | Answer the following questions. (Any Four) 1) Define simple and composite hypothesis. 2) Define power function of a test. 3) Define average sample number. 4) State the assumptions of non-parametric tests. 5) Define uniformly most powerful C.R. and uniformly most powerful test. | | | | | | | | | B) | Answer the following questions. (Any Two) 1) Define run used in run test with suitable illustration. 2) Define pivotal quantity and illustrate with suitable example. 3) State the advantages of non-parametric tests. | 06 | | | | | | | Q.3 | A) | Answer the following questions. (Any two) 1) Obtain 100(1 – α)% C.I. for the mean μ of N(μ, σ²) distribution when σ² is unknown. 2) Explain Wilkoxan's signed rank test for two independent samples. 3) Let X be a B(1, θ) r.v. Construct SPRT of strength (α, β) for testing H₀: θ = θ₀ against H₁: θ = θ₁(θ₁ > θ₀). | 80 | | | | | | | | B) | Answer the following questions. (Any One) 1) Obtain L.R. test for testing $\text{Ho:} \mu = \mu_0$ against $\text{H}_1 : \mu \neq \mu_0$ based on a random sample from $N(\mu, \sigma^2)$ distribution when both μ and σ^2 are unknown. | | | | | | | | | | 2) Obtain $100(1-\alpha)\%$ confidence interval for difference between means $(\mu_1-\mu_2)$ in case of two normal populations $N(\mu_1,\sigma_1^2)$ and $N(\mu_1,\sigma_2^2)$, where σ_1 and σ_2 both are known. | | | | | | | | Q.4 | A) | Answer the following questions. (Any Two) 1) Describe run test for two independent samples. 2) Obtain SPRT for testing H₀: λ = λ₀ against H₁: λ = λ₁(λ₁ > λ₀) where λ is the mean of Poisson distribution. 3) Obtain 100(1 – α)% confidence interval for population proportion. | 10 | | | | | | ## SLR-DK-248 ## B) Answer the following questions. (Any One) 04 - 1) Explain in brief median test. - 2) An urn contains 6 marbles of which θ are white and remaining are black. Suppose two marbles are drawn at random without replacement, in order to test H_0 : $\theta=3$ against H_1 : $\theta=4$. H_0 is rejected if both marbles are white otherwise accepted. Compute size of a test. ## Q.5 Answer the following questions. (Any two) 14 - a) Write a note in detail on Mann-Whitney U test. - b) State and prove Neyman-Pearson Lemma. - **c)** Construct SPRT for testing H_0 : $\theta = \theta_0$ against H_1 : $\theta = \theta_1(\theta_1 > \theta_0)$ in $N(0, \sigma^2)$ distribution.