Seat No.

Set

B.Sc. (Semester - I) (Old) (CBCS) Examination Oct/Nov-2019 Mathematics (Paper – II) **CALCULUS**

Day & Date: Monday, 18-11-2019

Max. Marks: 70

Time: 11:30 AM To 02:00 PM

Instructions: 1) All questions are compulsory.

2) Figures to the right indicate full marks.

Fill in the blanks by choosing correct alternatives given below. **Q.1**

14

 $\lim_{x \to \infty} \log_x \sin x =$ ____.

a) 0

b) -1

c) 1

d) 2

 $\lim_{x \to \infty} x^2 e^{-x} = \underline{\qquad}.$ a) 0 2)

b) 3

d) e

 $\lim_{x \to \pi/2} \frac{\tan x}{\tan 3x} =$ 3)

b) 11

a) $\frac{1}{2}$ c) -2

d) 3

4)

- The expansion of $\log (1-x)$ is _____.

 a) $-\left[x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\cdots\right]$ b) $x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\cdots$ c) $1+x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\cdots$ d) $1-x+\frac{x^2}{2}-\frac{x^3}{3}+\frac{x^4}{4}-\cdots$

If $Y = (3x + 2)^9$ then $Y_{10} =$ _____. 5)

a) $9!3^9$

b) $\frac{9!}{10!}3^{10}(3x+2)^{10}$

c) $\frac{9!}{1!}3^{10}(3x+2)^0$

d) 0

If $f(x,y) = \frac{x^3 - y^3}{x^2 + y^2}$, $x^2 + y^2 \neq 0$ and f(0,0) = 0 then $f_4(0,0) =$ _____.

a) 1

c) -1

d) does not exist

7) If f(x, y) = |x| + |y| then ___

- a) f is not continuous at (0,0)
- b) f is continuous and differentiable at (0,0)
- c) f is continuous but not differentiable at (0,0)
- d) f is neither continuous nor differentiable at (0,0)

8) If f(x, y) is a Homogenous function of degree 'n' then

$$\left\{ \left(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \right) \left(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \right) \dots m \text{ times} \right\} f(x, y) = \underline{\qquad}.$$

a) $n^m f(x, y)$

b) $m^n f(x, y)$

c) (n+m) f(x,y)

d) n(n-1) f(x,y)

9) If
$$u = f\left(\frac{x}{y}\right)$$
 then $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} =$ _______.

0

10)
$$\int_0^{\pi/2} \sin^4 x \cos^5 x \ dx = \underline{\qquad}.$$

11)
$$\int_0^\infty \frac{dx}{(1+x^2)^5} = \underline{\hspace{1cm}}$$

12) If
$$\bar{a}$$
 is a constant vector and r and \bar{r} have usual meanings, then $\nabla(\bar{a}.\bar{r})$ =

- If $\bar{f} = x^2zi 2y^3z^2j + xy^2zk$ then curl \bar{f} at (1,-1, 1) is _____. a) 0 b) 7 13)

- The directional derivative of a scalar point function ϕ is maximum in the direction of _____.
 - a) ∇*φ*

b) ∇. φ

c) $\nabla \times \phi$

d) Curl grad ϕ

Attempt any four of the following question. Q.2

08

- Find y_5 of $y = \frac{\log x}{x}$. 1)
- Evaluate $\lim_{x \to 0} \frac{3^x 2^x}{x}.$ 2)
- Define the term limit of a two variables. 3)
- 4) $\int_{-\infty}^{\pi/2} \sin^8 x \cos^4 x \, dx.$ Evaluate
- If $\phi = x^3 + y^3 + z^3 3xyz$, find $\bar{r} \cdot \nabla \phi$

B) Attempt any two of the following questions.

06

- State Taylor's and Maclaurin's series. 1)
- Examine for continuity at (0,0) the function $f(x,y) = \frac{x^3 + y^3}{x y}$ if $(x,y) \neq (0,0)$ 2)
- Find the directional derivative of $\phi(x, y, z) = xy^2 + yz^3$ at the point 3) (2,-1,1) in the direction of the vector i+2j+2k.

Attempt any two of the following question. Q.3 A)

08

If $y = e^{ax} \cos(bx + c)$ then prove that $y_n = r^n e^{ax} \cos(bx + c + n\phi)$ where $r = \sqrt{a^2 + b^2}$ and $\phi = \tan^{-1} \frac{b}{a}$ 2) If $z(x + y) = x^2 + y^2$ show that

$$\left(\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)^2 = 4\left(1 - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)$$

- 3) Prove that $\nabla^2 f(r) = \frac{d^2 f}{dr^2} + \frac{2}{r} \frac{df}{dr}$
- B) Attempt any one of the following questions.

06

- 1) State and prove L' Hospital's rule.
- 2) Verify Euler's theorem for the function

$$u = \sin^{-1} \frac{\sqrt{x} - \sqrt{y}}{\sqrt{x} + \sqrt{y}}$$

Q.4 A) Attempt any two of the following questions.

10

- 1) If \bar{r} is the position vector of the point (x, y, z) and r is the modulus of \bar{r} then prove that curl $r^n \bar{r} = \bar{0}$ and div $(r^n \bar{r}) = (n+3)r^n$
- 2) If $In = \frac{d^n}{dx^n}(x^n \log x)$ prove that, $In = nI_{n-1} + (n-1)!$ hence, deduce that

$$I_n = n! \left(\log x + 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right)$$

3) Find the integral

$$\int_0^\pi x \sin^4 x \cos^6 x \, dx$$

B) Attempt any one of the following questions.

04

1) If $x = r \cos \theta$, $y = r \sin \theta$, prove that

$$\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} = 0 \quad \text{for} \quad x \neq 0, y \neq 0$$

- 2) Prove that grad Q is a vector normal to the surface Q(x, y, z) = C
- Q.5 Attempt any two of the following questions.

14

- a) State and prove Leibnitz's theorem.
- b) If Z = f(x,y) is a function possessing continuous first order partial derivatives and x = h(t), y = g(t) possessing continuous first order partical derivatives then prove that

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$

c) 1) Evaluate the integral

$$\int_{0}^{2} (4-x^2)^{7/2} dx$$

2) If $\phi = x^2 + y^2 + z^2$, $\Psi = x^2y^2 + y^2z^2 + z^2x^2$, find $\nabla[\nabla \phi. \nabla \Psi]$.